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1 | INTRODUCTION
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Interdecadal changes in the potential predictability of the East Asian summer mon-
soon (EASM) and South Asian summer monsoon (SASM) were investigated using
the signal-to-noise ratio of daily reanalysis data from 1948 to 2017. Results reveal
that variations in the SASM predictability are out of phase with those in EASM
predictability, and that SASM predictability is higher (lower) than EASM predict-
ability before (after) the 1980s. The out-of-phase relationship of the predictability
of the two monsoon systems is attributed mainly to temporal changes in their rela-
tionships with El Nifio-Southern Oscillation (ENSO). The relationship between the
EASM and ENSO is related to the position of the ENSO heating center, which is
located in the central Pacific before the 1980s but shifted to the eastern Pacific after
the 1980s, accompanied by a strengthening (weakening) in the relationship
between ENSO and the EASM (SASM). The shift in the position of the ENSO
heating center was found to have contributions from the modulation of the Pacific
decadal oscillation.
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et al., 2006, 2009). As predictability is an inherent nature of
the monsoon system (Li and Chou, 1997), a comparison of

The East Asian summer monsoon (EASM) and the South
Asian summer monsoon (SASM) are two major components
of the Asian monsoon system, which itself is part of the
global monsoon system, and they play an important role in
modulating precipitation and wind fields, which have impor-
tant effects on climate change in Asia (Lau and Weng, 2001;
Ding and Chan, 2005; Chang et al., 2011). Thus, accurate
predictions of the summer monsoon are vital to obtaining
reliable forecasts of intense precipitation and associated
flood events across East Asia (Webster er al, 1998; Wu

the predictability of these two monsoon systems will benefit
efforts to improve monsoon and related precipitation
forecasts.

To explore the monsoon predictability at different time-
scales will likely lead to improved forecasts. Several studies
have reported the multitimescale changes in predictability of
the summer monsoon, from synoptic to interannual time-
scales. Besides, the relationship between the EASM or the
SASM and El Nifio-Southern Oscillation (ENSO) has also
been explored, but with a focus on seasonal and interannual
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timescales. For example, Ai ef al. (2017) investigated the
predictability limit of EASM indices on a synoptic timescale
using the nonlinear local Lyapunov exponent method pro-
posed by Ding and Li (2007, 2009) and demonstrated that
EASM indices defined by zonal wind shear tend to be more
predictive than those defined by sea-level pressure and
meridional wind shear. Consequently, the monsoon index
used in this study is based on zonal wind. The predictability
of the monthly and seasonal-scale circulation and rainfall of
the EASM and the SASM have also been examined using
numerical simulations. Wang et al. (2004) found that nearly
all atmospheric general circulation models perform poorly in
simulating circulation and precipitation anomalies over the
monsoon area at the monthly scale. Lee et al. (2010) investi-
gated the potential ability of two climate forecast models to
predict EASM precipitation and circulation one or two sea-
sons in advance. Variability in the seasonal predictability of
the summer monsoon has also been investigated (e.g., Wang
et al., 2005; Zhou and Zou, 2010; Yang et al., 2012; Seo
et al., 2015; Wu and Yu, 2016), revealing that ENSO is the
primary indicator of the seasonal predictability of the sum-
mer monsoon. The relationship between the EASM (SASM)
and ENSO at interannual timescales has been studied exten-
sively, demonstrating that the sea surface temperature (SST)
heating center and phases of ENSO have varying effects on
the monsoon system (Parthasarathy and Pant, 1985; Huang
and Wu, 1989; Chen, 2002; Wu et al., 2003). Whether the
interdecadal relationship between the EASM (SASM) and
ENSO is an important indicator of monsoon predictability
remains an open question. The effects of ENSO events on
the relationship between the EASM (SASM) and ENSO at
interdecadal timescales also remain poorly known. These
uncertainties are the primary motivation of the present study.

Here, we compare interdecadal changes in the predict-
ability of two monsoon systems and investigate the potential
effects of the ENSO-Monsoon relationship on predictability
at interdecadal timescale. The reminder of this article is
organized as follows. The data, indices and methods used
are described in Section 2. Section 3 compares the interdeca-
dal changes in predictability of EASM and SASM. A discus-
sion and conclusion are provided in Section 4.

2 | DATA AND METHODS

2.1 | Reanalysis data

The SST dataset used in this study is the Extended Recon-
structed SST version 3b (ERSSTv3b) dataset from the
National Oceanic and Atmospheric Administration with a
2° % 2° horizontal grid resolution and covering the period
1948-2017 (Smith er al., 2008). Daily mean atmospheric
fields were taken from the National Centers for Environmen-
tal Prediction (NCEP1) reanalysis data, with a horizontal res-
olution of 2.5° x 2.5° for the period 1948-2017 (Kalnay

et al., 1996; Kistler et al., 2001). Monthly precipitation data
were obtained from the Climate Prediction Center Merged
Analysis of Precipitation dataset (1979-2017) and used to
examine the mechanism of the ENSO-Monsoon relationship
in this paper. The climatology is derived from the whole
period of each dataset.

2.2 | Indices

The Nifio 3.4 index is defined as the area-average of
monthly sea surface temperature anomaly (SSTA) in the
region (5°S—5°N, 150°-90°W) and is often used to explore
the relationship between the summer monsoon and ENSO.
The Nifio 3 index and the El Nifio Modoki index (EMI) are
similarly used to investigate two types of ENSO events with
heating centers located in the eastern and central Pacific,
respectively. The Nifio 3 index is the area-average of
monthly SSTA in the region (5°S-5°N, 170°-120°W). The
EMI (Ashok et al., 2007) is defined as

EMI = [SSTA], - 0.5 x [SSTAJ; — 0.5 X [SSTA], (1)

where [] represents the area-averaged SSTA over the central
Pacific (A; 10°S—10°N, 165°E~140°W), the eastern Pacific
(B; 15°S-5°N, 70-110°W), and the western Pacific (C;
10°S-20°N, 125-145°E).

Wang and Fan (1999) used the area-averaged 850-hPa
zonal wind (U850) over (5°-15°N, 90°-130°E) minus the
area-averaged U850 over (22.5°-32.5°N, 110°-140°E) dur-
ing June—August (JJA) as the EASM index:

EASM = Usgso (5" — 15N,90 - 130 E)
—Usso(22.5 -32.5N, 110 —140°E).  (2)

The SASM index using the area-averaged 850-hPa zonal
wind (U850) minus the area-averaged 200-hPa zonal wind
(U200) over the monsoon region (0°-20°N, 40°-110°E)
from June to September (Webster and Yang, 1992) is
defined as

SASM = Ugsy — U (0 —20'N,40 - 110°E).  (3)

2.3 | Signal-to-noise ratio method

The signal-to-noise ratio (SNR) method has been widely
used to investigate atmospheric predictability (Trenberth,
1984, 1985; Goswami, 2004). This method estimates atmo-
spheric predictability by quantifying the relative contribu-
tions of the predictable climate signal and the unpredictable
climate noise:

Var(signal) + Var(noise)

SNR = , (4)

Var(noise)

where Var(signal) represents the variance of interannual var-
iability, and Var(noise) is the variance of the intra-annual
(seasonal) variability.



LIET AL.

ERMets 3of7

One limitation of the SNR method is that only one value
can be calculated from a time series to represent the potential
predictability over a given period. We chose an 11-year slid-
ing window to investigate interdecadal changes in the
EASM and the SASM. In addition, the signal and noise of
monsoon predictability can be separated using the SNR
method to analyze their respective effects on the
predictability.

3 | RESULTS

The SNR method was used to calculate potential predictabil-
ity from 1948 to 2017, using an 11-year window. The inter-
decadal changes in EASM and SASM predictability are
shown in Figure 1a. The EASM and SASM predictabilities
are inversely correlated. The SASM predictability is higher
than that of EASM before the 1980s, with EASM predict-
abilities below 8 and SASM predictabilities in the range
10-16. After this time, the SASM predictability decreases to
around 8 and the EASM predictability rises to between
16 and 22 during 1977-2000. The SASM predictability then
increases to above that of EASM during the 2000s.

The interdecadal monsoon signals (Figure 1b) follow
the trends in predictability shown in Figure la. However,
the EASM and SASM noise patterns differ from the signal
and predictability patterns (Figure 1c), with the EASM
noise (~0.4) being slightly larger than the SASM noise
(0.1-0.2), which may contribute to the complexity of
predicting EASM.

To examine whether the signal or the noise is the pri-
mary contributor to predictability, we calculated the correla-
tion coefficient between the predictability in EASM and
SASM, as well as their respective signals and noise. The cor-
relation coefficient between predictability and signal for the
EASM is slightly lower than that for the SASM (0.996 and
0.786, respectively; significant at the 99% confidence level).
However, neither the EASM nor SASM noise is signifi-
cantly correlated with predictability. Thus, the interdecadal
change in monsoon predictability is correlated primarily with
monsoon signal, whereas there is no significant correlation
with noise.

Previous studies have revealed that ENSO is a primary
contributor to the predictability of the summer monsoon.
The physical mechanisms through which ENSO is related to
the summer monsoon have been investigated (Nigam, 1994;
Goswami, 1998; Wu et al., 2012; Li et al., 2018), showing
that ENSO affects the SASM in developing summer and the
EASM in the decayed year. The Nifio 3.4 index was chosen
to represent ENSO to investigate its correlation with the two
summer monsoons (Figure 2). The Nifio 3.4 and the SASM
are significantly negatively correlated before the 1980s,
whereas the positive relationship between the Nifio 3.4 and
the EASM becomes significant after the 1980s. Overall,
EASM and SASM show opposite relationships with ENSO;
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FIGURE 1 (a) Interdecadal change in the potential predictability of the
EASM and the SASM from 1948 to 2017 using an 11-year sliding window,
where red lines indicate the EASM and blue lines indicate the SASM.

(b) and (c) Same as (a) but for signal and noise

that is, ENSO may contribute to SASM (EASM) before
(after) the 1980s. Combined with the monsoon predictability
(see Figure la), interdecadal changes in the relationship
between ENSO and the summer monsoons are well correl-
lated with predictability (Figure 2). During the period in
which ENSO is significantly correlated with the EASM, pre-
dictability is high, as is the case with the SASM. Thus, inter-
decadal changes in the relationships between ENSO and the
summer monsoon systems lead to interdecadal changes in
EASM and SASM predictability.
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FIGURE 2 The 11-year sliding correlation coefficient between the EASM
(red line) or the SASM (blue line) and the Niflo 3.4 index. The dashed lines
indicate the 95% confidence level

Whether these interdecadal relationships are caused by
interdecadal variations in ENSO type warrants further inves-
tigation. Thus, due to the turning points of predictability and
correlation coefficient occuring in Figures la and 2, SST
anomalies related to El Nifio events are divided into two pre-
iods, 1948-1976 and 1977-2000, and shown in Figures 3a
and b. The identification of El Nifio events was based on the
winter (December-February) Nifio 3.4 index. Following the
method of Yoon and Yeh (2010), events were identified for
the composite analysis when the normalized index was
greater than 0.5. EI Nifio events were identified in 1951,
1953, 1957, 1958, 1963, 1965, 1968, 1969, 1972, and 1976
during the period 1948-1976 and in 1997, 1979, 1982,
1986, 1987, 1990, 1991, 1994, and 1997 during the period
1977-2000. A composite analysis of SST anomalies shows
that the location of the ENSO heating center varies on an
interdecadal timescale, with SST anomalies being located
primarily in the central Pacific during 1948-1976 and in the
eastern Pacific during 1977-2000.

To examine whether the location of the ENSO heating
center affects the summer monsoon systems, the Nifio
3 index (EMI) is used to represent the ENSO heating center,
which locates in the eastern (central) Pacific. The 850-hPa
horizontal winds and precipitation anomalies were regressed
onto the Nifio 3 index (EMI) for June—August during ENSO
developing and decaying years. As shown in Figures 4a and
b, different ENSO heating centers lead to different wind
fields and precipitation in the tropics during the summer of
ENSO developing years. Compared to ENSO events with its
heating center in the eastern Pacific, the ENSO events with
heating centers in the central Pacific will cause more precipi-
tation in the northwestern Pacific and less precipitation in
the maritime continent and the Indian subcontinent. Precipi-
tation anomalies cause unequal changes in latent heat
release, leading to changes in the wind field. With this kind
of heating, cross-scale air flow in the southern Indian Ocean
is enhanced and exhibits anomalous cyclonic changes
between 60° and 120°E, further affects the onset and devel-
opment of the SASM. Weak precipitation anomalies caused

60°N

30°N

30°S

60°S
120°W 60°W

60°N

T

30°N

30°S
©
60°S T T T
120°E 180 120°W 60°W
[ [N N I NN B
-1 -08 -06 -04 -02 02 04 06 08 1
FIGURE 3  (a) Composite anomalies of SST over the tropical Pacific

Ocean during winter December-February (DJF) for selected El Nifio events
(EN) during 1948-1976. (b) and (c) Same as (a) but for 1997-2000 and
2001-2016, respectively. El Nifio events were selected for composite
analysis when the normalized Nifio 3.4 index was greater than 0.5

by ENSO events with heating centers in the eastern Pacific
are unable to stimulate such changes in the wind field, lead-
ing to negligible impacts on the SASM. The Indian subconti-
nent is more arid during El Nifio events than during normal
years because of the downward branch of the Walker circu-
lation. Thus, ENSO events with heating centers in the central
Pacific, compared with those in the eastern Pacific, have
more noticeable impacts on the SASM and lead to less pre-
cipitation over the Indian subcontinent. At the same time,
warm SST anomalies coupled with heating centers in the
central Pacific may enhance convection and trigger an anom-
alous cyclone in the lower troposphere closer to the Indian
Ocean via the Gill-Matsuno mechanism, compared with the
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(a) Regression of 850-hPa horizontal wind (vectors) and precipitation (shading) anomalies onto (a) the EMI and (b) the Nifio 3 index for summer

(JJA) during ENSO developing years. (c), (d) As in (a) and (b) but for ENSO decaying years, respectively. Green rectangle in (a) and (b) denotes the region of
the SASM (40°-110°E, 0°-20°N), and those in (c) and (d) denote the two regions of the EASM (90°-130°E, 5°~15°N; 110°-140°E, 22.5°-32.5°N). All

shown coefficients are statistically significant at a 90% confidence level

case of ENSO events with heating centers in the eastern
Pacific (Matsuno, 1966; Gill, 1980).

Wu et al. (2017a, 2017b) revealed that by maintaining
the western North Pacific anomalous anticyclone (WNPAC),
ENSO affects EASM in subsequent years. Therefore, the
location of the WNPAC plays a key role in the EASM. In
Figure 4c, the location of the WNPAC center caused by
ENSO events with a heating center in the central Pacific is
more easterly and northerly (140°E, 28°N), whereas the
WNPAC center caused by ENSO events with a heating cen-
ter in the eastern Pacific is located around (135°E, 20°N),
near East Asia, and has a greater influence on the EASM
(Figure 4d).

Figure 5 shows the average correlation coefficients
between the wind fields (area defined by the monsoon index)
and the Nifio 3 index (EMI). During ENSO developing
years, ENSO events with central-Pacific heating centers, as
indicated by the EMI, show a stronger relationship with the
SASM than for ENSO events with heating centers in the
eastern Pacific (average correlation coefficients of 0.15 and
0.03, respectively). A weaker relationship with EASM is
found for ENSO events with heating centers in the central
Pacific during ENSO decaying years (an average correlation
coefficient of 0.31) than for ENSO events with heating cen-
ters in the eastern Pacific (an average correlation coefficient

of 0.93). These results are consistent with those shown in
Figure 4. Thus, ENSO events with heating centers in the
central Pacific have a significant effect on the SASM,
whereas those with heating centers in the eastern Pacific
have similar effects on the EASM. The location of the
ENSO heating center modulates the interdecadal changes in
the interannual relationship between ENSO and these mon-
soon systems.

4 | CONCLUSION AND DISCUSSION

The SNR method was used to analyze interdecadal changes
in the predictability of the EASM and the SASM from 1948
to 2017 using reanalysis data. Results suggest that variations
in SASM predictability are out of phase with those in EASM
predictability. The SASM predictability is higher than
EASM predictability before the 1980s, and lower during
1977-2000. Here we reveal that monsoon predictability is
affected by ENSO and that the location of the ENSO heating
center varies on an interdecadal timescale, which causes an
interdecadal change in the ENSO-monsoon relationship.
Before 1976, SASM predictability was higher than EASM
predictability because the heating centers of ENSO events
were in the central Pacific. Precipitation fields generated by
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this type of ENSO excite wind anomalies that facilitate
SASM onset and maintenance. From 1977 to 2000, the
ENSO heating center was located primarily in the eastern
Pacific and showed a stronger relationship with EASM in
subsequent years due to the location of the WNPAC.

The Pacific decadal oscillation (PDO) modulates the
interannual relationships between monsoon systems, and
ENSO has been revealed in several studies (e.g., Zhu
and Yang, 2003; Yoon and Yeh, 2010). Krishnamurthy and
Krishnamurthy (2014) reported that the phase of the PDO
may lead to better long-term predictions of seasonal mon-
soon rainfall and the impacts of ENSO on monsoons. Sev-
eral studies have found that the PDO influences the type of
ENSO. For example, Lin et al. (2018) pointed out that posi-
tive SST anomalies during El Nifio events in the equatorial
eastern Pacific are much stronger during positive PDO
phases than during negative phases. Feng et al. (2014) found
that El Nifio decays slowly (rapidly) during positive (nega-
tive) PDO phases. As shown in Figure 3a and b, warm SST
anomalies were located in the central Pacific for the time
period from 1948 to 1976, which is correspond with the
PDO negative phase, as warm SST anomalies in eastern
Pacific when PDO in positive phase for 1977-2000. In addi-
tion, the PDO transfers to negative phase in recent years,
and warm SST anomalies located in the central Pacific even
with increased ENSO amplitudes during 2001-2016 (see
Figure 3c). Thus, the PDO may be the primary contributor to
interdecadal changes in the location of the ENSO heating
center. However, the underlying physical processes should
be explored in future work, which is also helpful for us to
deepen the independence and connection between EASM
and SASM.

To aid the development of seamless multiscale weather
forecasts and our understanding of monsoon predictability,
we investigated interdecadal changes in the EASM and the
SASM. Such a comparison of the EASM and the SASM

implies us that EASM (SASM) is more likely be predicted
with the ENSO heating center in eastern (central) Pacific.
Thus, this research enhances the understanding of predict-
ability changes in the monsoon season, but also providing a
complete framework for the monsoon prediction. Nonethe-
less, future work should eventually incorporate these find-
ings into monsoon predictability over broad timescales.
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